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Transition moments for linear potentials 

F M FernQndez, G A Arteca, S A Maluendes and E A Castrot 
INIFTA, Secci6n Quimica Teorica, Sucursal 4-Casilla de Correo 16, La Plata 1900, 
Argentina 

Received 9 November 1981, in final form 25 January 1982 

Abstract. A new method based on hypervirial relationships is used to calculate transition 
moments for linear potentials of bounded systems, generalising previous results. The 
deduced equations are applied to the model of an electron in a finite unidimensional crystal 
under the influence of an external uniform electric field. 

1. Introduction 

The linear potential possesses a marked importance in physics, because it enables us 
to study several phenomena of great interest. Among them, we can mention the 
properties of an electron in a finite-range constant electric field (Rabinovitch and Zak 
1971), disordered systems (Lukes et a1 1976) and narrow boson resonances (Harring- 
ton et a1 1975). Because of this, some authors have paid special attention to the 
evaluation of matrix elements of coordinate powers in a basis set of Airy functions 
(A i )  (Ferreira and AlcarQs 1975, Aguilera-Navarro et a1 1980). In both cases, only 
the regular Airy functions were used, because the variable could attain any value 
within the range [0, CO). As far as we know, up to now nobody has investigated which 
are the modifications (if any) for the expressions of the transition moments given 
previously (Ferreira and AlcarQs 1975, Aguilera-Navarro et a1 1980) when the range 
of the variable is restricted to be a finite interval. This situation is not an artificial 
one, because it must be considered in an explicit fashion in certain cases (Lukes et a1 
1976, Rabinovitch and Zak 1971). 

Recently, we have presented a new method which permits one to obtain in an 
analytical form the perturbation corrections for some bounded systems (Fernandez 
and Castro 1981a-h). By means of this procedure, which is based on the hypervirial 
theorems, we could analyse i n  a very satisfactory way the unidimensional harmonic 
oscillator model for different boundary conditions, the multidimensional isotropic 
bounded oscillator, the hydrogen atom inside impenetrable spherical and paraboloidal 
surfaces, and a unidimensional bounded system subjected to a linear potential. 

The purpose of this communication is to apply the hypervirial relationships (HR), 
diagonal (DHR) as well as off-diagonal (ODHR), in order to obtain matrix elements of 
a more general character than those deduced formerly by Ferreira and Alcaras (1975) 
and Aguilera-Navarro et a1 (1980). The methodology used here has been already 
employed for calculating transition moments with a basis set of Bessel functions 
(FernQndez et a1 1981). It proved to be a very efficient procedure and particularly 
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easy to apply. One of the most important and attractive features of the HR consists 
in the possibility of dealing with any boundary condition (BC). 

The plan of this paper is as follows: in 0 2 we present briefly some general properties 
of the solutions of the Schrodinger equation with a linear potential. Section 3 is 
devoted to deducing the HR from which the matrix elements of the coordinate powers 
will be obtained when the range of the coordinate is finite, say [0, xo], and for Dirichlet 
boundary conditions (DBC). In the limit x0+co, our results coincide with those 
previously given by Ferreira and Alcarls (1975) and A'guilera-Navarro et a1 (1980), 
which can be considered as particular cases of ours. The equations obtained in this 
section are applied in 0 4 to calculate some transition moments for the model of an 
electron which is moving in a finite one-dimensional empty crystal under the influence 
of a uniform electric field. Finally, in § 5 we display some possible extensions of the 
method which enables us to discuss more complex cases. 

2. One-dimensional Schrodinger equation with a linear potential 

Let us consider the Schrodinger equation 

H4 = E49 
H=-' 2 d /dx2+ gx, 

where the wavefunction is subjected to the BC 

4 (0) = 4 b o )  = 0. 

Defining the new variable y by 
e = 2 1 / 3  -213 y = (2g)'13x - e ,  g E9 

equation (1) is transformed into the Airy differential equation 

f ' (Y  1 - Y f ( Y )  = 0, f ( Y )  = (b[ (2g) - ' /3  Y + E/gl. 

The eigenvalues are determined via the BC (3), 

(3) 

(4) 

where e ,  are the roots of the determinant De, A i (y )  is the regular Airy function and 
Bi(y )  is the non-regular Airy function (Abramowitz and Stegun 1965). The eigen- 
functions associated with equation (1) that fulfil the BC (3) have the following form: 

According to the properties of the functions Ai(y )  and Bi(y ) ,  the condition 

lim 4, ( x )  = NL Ai[(2g)'13x + U, ]  (8) 
xo+m 

is satisfied, with a, the n th zero of Ai(y). 
When xo is large enough, the asymptotic behaviour of the Airy functions 

(Abramowitz and Stegun 1965) allows us to deduce at once that (Aguilera-Navarro 
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eta1 1981) 
-e, = a, + (Bi(a,,)/2A~(afl)) e-”, 

4, = N,{Ai[(2g)’/3x -e,l-~e-2‘Bi[(2g)1~3x -e,]}. 

2 = 5 [(2g)l/3xO + afl]3’2, (9) 

(10) 

3. Matrix elements 

The solutions 4, ( x )  of the Schrodinger equation 

H = -bd2/dX2 + V ( X ) ,  

H4 ,  =E,+,, (dnI4m) = Snm,  

x E [a, 61, 

subject to the BC 

4f l (a )  =A4l(a) ,  4fl(b) =B4: , (b ) ,  

( n  

must satisfy the following HR (Fernandez and Castro 1981a-h); 

WIlm> = (E, -Em)(n  I WIm) + R n m  ( W )  

for any arbitrary linear operator W, and with 

~ n m ( ~ )  =$[4~(x)W4m(x)-4,(x)(W4m)’(x)I~.  
From equation (14) we deduce immediately the equation 

i(n I f” I m ) + (E, + Em )(n If’ I m ) - 2(n If’ v I m ) - ( n  Ifv’l m ) 
+ (En - E m  )’(n JFIm) = R f l m  cfo) - (En - E m ) R n m  (F) - $ R n m  cf‘) (16) 

for any differentiable function F ( x )  such that F’(x)  = f ( x ) ,  and with D =d/dx. When 
the eigenfunctions satisfy the DBC (A = B = 0 in equation (13)) 

(17) 4, ( a )  = 4, ( b )  = 0 

and f ( x )  possesses the simple expression 

f ( x ) = x N  (18) 
then equation (16) is transformed into 

~ N ( N  - 1 ) ( N  - 2) Q:;’ + N ( E ,  + E, ) 0:; - 2 ~ ( ~  I x  -l V I  m ) - ( n  I X  m ) 

where 
Qrm =(nlxNlm>. 

V ( x )  = gx 
When 

and a = 0, b = xo, then equation (19) yields a recursion relationship which enables us 
to calculate the whole set of transition moments Qrm : 
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Starting from N = 0, the successive assignment of values to N allows us to obtain all 
the integrals Qf;’,. For N = 0 and N = 1,  the results are 

41 (0l2 - 41 = 2g (normalisation condition), (24) 

Q!tm = ~ ( ~ ~ ( x o ) ~ L ( x o )  -4k(O)4L(O))(En -Em)-2, n # m ,  ( 2 5 )  

Q!t ,  = (1/3g)[2Efl - b 0 ( 4 k ( 0 ) ~ - 2 g ) I ,  (26 )  

Q i m  = 2[3gQ!tm + I ~ o ( ~ ~ ( x o ) ~ L ( x o ) ) I ( E ,  - -Em)-2 ,  n fm, (27) 

where 

The high-order transition moments are deduced in a similar fashion. When xo + 00, 

our results tend to those formerly presented by Ferreira and Alcarhs (1975), and 
Aguilera-Navarro et a1 (1980), i.e. 

Nn = (2g)”6/AXa, ) ,  ( 2 9 )  

R,, (D) = - g, Rf lm(XND) = 0 ,  N>O, (30) 

Q!tn 2EnI3gT (32)  

Q!tm = -g(E, - Em)-2, n # m, (31) 

Q:,,, = -6g2(E, - Em)-4, n f m, (33)  

(34) 

When xo is large enough, we can replace equations (9)-(10) in (22)-(28) with the 
purpose of determining the asymptotic behaviour of the transition moments. 

E, = -g2’3a,/2 1 / 3  . 

4. Electron in a finite unidimensional crystal under the influence of an external 
electric field. The empty crystal model 

The eigenstates of an electron of mass m and electric charge - e  which is moving in 
an empty crystal of length L under an applied electric field of strength F, are given 
by the following Schrodinger equation: 

This model was used by Rabinovitch and Zak (1971) to study the boundary effects 
on the electronic states, bearing in mind that in physical reality the crystal’s range 
and the range of the electric field are finite. Also Lukes et a1 (1976) used this model 
to discuss the density of states for disordered systems in the presence of an electric field. 



Transition moments for linear potentials 2127 

In this section we apply the preceding formal results to show the variation of the 
transition moments as a function of the crystal length L. Making the change of variable 

x = (mfh-’)’13 (q  + ~ / 2 ) ,  (38 )  
equations (35)-(36) are transformed to 

- ; ~ ’ ’ ( x ) + x ~ ( x ) =  E ~ ( x ) ,  E = ( m h - ’ f  ’)lI3E’+ (mfh-’)’”L/2, (39 )  

(40 )  4 (0) = 4 b o )  = 0, xo = ( m f h - 2 ) ‘ / 3 ~ .  

These equations coincide with equations (1)-(3)  when g = 1. In order to calculate the 
transition moments, it is convenient to modify the normalisation condition (24 )  as 
follows: 

4 I ( 0 ) ’ + 2  aE,/axo= 2g. (41 )  

aE,,/axo = 44; (x0)’ (42 )  

We have applied the result (Fernindez and Castro 1981a) 

to deduce equation (41) .  
Choosing the sign of the functions &(x) in such a way that 4;  (xo)  > 0, we obtain 

4 ; ( 0 ) = ( - 1 ) ” - ’ ( 2 g - 2  ~ E , , / ~ X O ) ’ ”  (43 )  
where n - 1 is the number of zeros of &(x)  in (0, X O ) .  Then, we need only to know 
E,, (xo) for the purpose of computing the transition moments. From the HPM, we have 
obtained (Fernindez and Castro 198 lh )  an analytical expression for the eigenvalues 
of (39)-(40) corrected in a perturbative manner up to the fourth order: 

E,, C,xi2 + 0 . 5 ~ 0  + [(48C,,)-’ - 5(32 C’,)-’]X: 

+[ (2304  C”,-’-70(1536 C:)-’+55(256 C;)-’]X~ 

l 5  t 

(44)  

10 20 3.0 
XO 

Figure 1. First transition moments ati for an electron in an empty crystal in the presence 
of a uniform electric field. 
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where 

C, = 0.5 n'rr'. (45) 

Due to the fact that this formula gives very good results for the ground state when 
xo s 3.2, and for the first excited state when xo S 3.5, we have calculated the transition 
moments in such a range of x,, values, We display in figure 1 the variation of transition 
moments Q i 1 ,  Qiz, Qi,  and ai3 as a function of X O .  

5. Conclusions 

The study of the three-dimensional Schrodinger equation for a linear radial potential 
(Harrington et a1 1975, Ferreira and Alcaris 1975) requires us to consider the 
unidimensional eigenvalue equations (1 1)-( 12) for a potential function 

V(x) = gx + t/2x2. (46) 

When t = 0, the results of the preceding sections are wholly applicable. But for t # 0 
equation (19) is transformed to 

(N-1) [0 .25N(N-2)- t ]Qf; ' , -3  +N(E,, +Em)Qri l  

Although equation (47) is slightly different with respect to equation (22), the new 
term complicates the equation in such a way that now it is not so easy to calculate 
the matrix elements Qrm as previously. For N = 0 and N = 1, the following results 
are deduced: 

Although the presence of negative powers does not allow us to make a similar 
calculation to that presented in 3 2, these equations are of a marked usefulness because 
they relate all the moments with a reduced number of quantities. 

Finally, we deem it appropriate to point out that the treatment presented in this 
communication is not restricted to DBC, but is equally suitable for any BC with the 
general form (13). In particular, it is important to note that von Neumann BC are 
especially favoured owing to the fact that the zeros of A : ( y )  and B : ( y )  are tabulated 
(Abramowitz and Stegun 1965). 

References 

Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover) 
Aguilera-Navarro V C, Iwamoto H, Ley-Koo E and Zimerman A H 1981 Am.  J. Phys. 49 648 
Aguilera-Navarro V C, Ley-Koo E and Zimerman A H 1980 J. Phys. A: Math. Gen. 13 3585 



Transition moments for linear potentials 

Fernlndez F M and Castro E A 1981a Znt. J. Quantum Chem. 19 521 
- 1981b Int. J. Quantum Chem. 19 533 
- 1981c Znr. J. Quantum Chem. 20 623 
- 1981d Phys. Reo. A 24 2883 
- 1981e J. Math. Phys. 22 1669 
- 1981f J. Marh. Phys. in press 
- 1981g J. Chem. Phys. in press 
- 1981h Physica A in press 
Fernlndez F M, M e s h  A and Castro E A 1981 J. Marh. Phys. in press 
Ferreira P L and Alcarls J A C 1975 Lett. Nuooo Cimento 14 500 
Harrington B J, Park S Y and Yildiz A 1975 Phys. Rev. Lett. 34 168 
Lukes T, Ringwood G A and Suprapto B 1976 Physica A 84 421 
Rabinovitch A and Zak J 1971 Phys. Reo. B 4 2358 

2129 


